Adipose Derived Stem Cells Reduce Fibrosis and Promote Nerve Regeneration in Rats

脂肪干细胞减少大鼠纤维化并促进神经再生

阅读:4
作者:Pietro G Di Summa, Luigi Schiraldi, Mario Cherubino, Carlo M Oranges, Daniel F Kalbermatten, Wassim Raffoul, Srinivas Madduri

Abstract

Peripheral nerve regeneration is critical and challenging in the adult humans. High level of collagen infiltration (i.e., scar tissue), in the niche of injury, impedes axonal regeneration and path finding. Unfortunately, studies focusing on the modulation of scar tissue in the nerves are scarce. To address part of this problem, we have evaluated the differentiated adipose derived stem cells (dASCs) for their antifibrotic and regenerative effects in a 10 mm nerve gap model in rats. Three different animal groups (N = 5) were treated with fibrin nerve conduits (empty), or seeded with dASCs (F + dASCs) and autograft, respectively. Histological analysis of regenerated nerves, at 12 weeks postoperatively, reveled the high levels of collagen infiltration (i.e., 21.5% ± 6.1% and 24.1% ± 2.9%) in the middle and distal segment of empty conduit groups in comparison with stem cells treated (16.6% ± 2.1% and 12.1% ± 2.9%) and autograft (15.0% ± 1.7% and 12.8% ± 1.0%) animals. Thus, the dASCs treatment resulted in significant reduction of fibrotic tissue formation. Consequently, enhanced axonal regeneration and remyelination was found in the animals treated with dASCs. Interestingly, these effects of dASCs appeared to be equivalent to that of autograft treatment. Thus, the dASCs hold great potential for preventing the scar tissue formation and for promoting nerve regeneration in the adult organisms. Future experiments will focus on the validation of these findings in a critical nerve injury model. Anat Rec, 301:1714-1721, 2018. © 2018 Wiley Periodicals, Inc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。