Interdependency of regulatory effects of iron and riboflavin in the foodborne pathogen Shigella flexneri determined by integral transcriptomics

通过整合转录组学确定食源性致病菌福氏志贺氏菌中铁和核黄素的调节作用的相互依赖性

阅读:4
作者:Luis Fernando Lozano Aguirre, Juan Carlos Salazar, José Ignacio Vásquez, Víctor Antonio García-Angulo

Abstract

Shigella flexneri is the causative agent of dysentery. For pathogens, iron is a critical micronutrient as its bioavailability is usually low in bacterial niches. This metal is involved in critical physiological processes mainly as a component of important metabolic molecules involved in redox reactions. Usually bacteria respond to fluctuations in iron availability to regulate iron acquisition and other iron-related functions. Recently the close metabolic feedback between iron and riboflavin, another pivotal biological redox agent, began to draw attention in bacteria. This is a widespread biological phenomenon, partly characterized by the coordination of regulatory responses to iron and riboflavin, probably owed to the involvement of these cofactors in common processes. Nonetheless, no systematic analyses to determine the extent of this regulatory effect have been performed in any species. Here, the transcriptomics responses to iron, riboflavin, iron in the presence of riboflavin and riboflavin in the presence of iron were assessed and compared in S. flexneri. The riboflavin regulon had a 43% overlap with the iron regulon. Notably, the presence of riboflavin highly increased the number of iron-responsive genes. Reciprocally, iron drastically changed the pool of riboflavin-responsive genes. Gene ontology (GO) functional terms enrichment analysis showed that biological processes were distinctively enriched for each subgroup of responsive genes. Among the biological processes regulated by iron and riboflavin were iron uptake, amino acids metabolism and electron transfer for ATP synthesis. Thus, iron and riboflavin highly affect the transcriptomics responses induced by each other in S. flexneri. GO terms analysis suggests that iron and riboflavin coordinately regulate specific physiological functions involving redox metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。