Aspergillus fumigatus Cell Wall Promotes Apical Airway Epithelial Recruitment of Human Neutrophils

烟曲霉细胞壁促进人类中性粒细胞向顶端气道上皮募集

阅读:4
作者:Michael B Feldman, Richard A Dutko, Michael A Wood, Rebecca A Ward, Hui Min Leung, Ryan F Snow, Denis J De La Flor, Lael M Yonker, Jennifer L Reedy, Guillermo J Tearney, Hongmei Mou, Bryan P Hurley, Jatin M Vyas

Abstract

Aspergillus fumigatus is a ubiquitous fungal pathogen capable of causing multiple pulmonary diseases, including invasive aspergillosis, chronic necrotizing aspergillosis, fungal colonization, and allergic bronchopulmonary aspergillosis. Intact mucociliary barrier function and early airway neutrophil responses are critical for clearing fungal conidia from the host airways prior to establishing disease. Following inhalation, Aspergillus conidia deposit in the small airways, where they are likely to make their initial host encounter with epithelial cells. Challenges in airway infection models have limited the ability to explore early steps in the interactions between A. fumigatus and the human airway epithelium. Here, we use inverted air-liquid interface cultures to demonstrate that the human airway epithelium responds to apical stimulation by A. fumigatus to promote the transepithelial migration of neutrophils from the basolateral membrane surface to the apical airway surface. Promoting epithelial transmigration with Aspergillus required prolonged exposure with live resting conidia. Swollen conidia did not expedite epithelial transmigration. Using A. fumigatus strains containing deletions of genes for cell wall components, we identified that deletion of the hydrophobic rodlet layer or dihydroxynaphthalene-melanin in the conidial cell wall amplified the epithelial transmigration of neutrophils, using primary human airway epithelium. Ultimately, we show that an as-yet-unidentified nonsecreted cell wall protein is required to promote the early epithelial transmigration of human neutrophils into the airspace in response to A. fumigatus Together, these data provide critical insight into the initial epithelial host response to Aspergillus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。