Development of Biocompatible Polyhydroxyalkanoate/Chitosan-Tungsten Disulphide Nanocomposite for Antibacterial and Biological Applications

生物相容性聚羟基脂肪酸酯/壳聚糖-二硫化钨纳米复合材料的开发及其在抗菌和生物领域的应用

阅读:6
作者:Abdul Mukheem, Syed Shahabuddin, Noor Akbar, Irfan Ahmad, Kumar Sudesh, Nanthini Sridewi

Abstract

The unique structures and multifunctionalities of two-dimensional (2D) nanomaterials, such as graphene, have aroused increasing interest in the construction of novel scaffolds for biomedical applications due to their biocompatible and antimicrobial abilities. These two-dimensional materials possess certain common features, such as high surface areas, low cytotoxicities, and higher antimicrobial activities. Designing suitable nanocomposites could reasonably improve therapeutics and reduce their adverse effects, both medically and environmentally. In this study, we synthesized a biocompatible nanocomposite polyhydroxyalkanoate, chitosan, and tungsten disulfide (PHA/Ch-WS2). The nanocomposite PHA/Ch-WS2 was characterized by FESEM, elemental mapping, FTIR, and TGA. The objective of this work was to investigate the antimicrobial activity of PHA/Ch-WS2 nanocomposites through the time-kill method against the multi-drug-resistant model organisms Escherichia coli (E. coli) K1 and methicillin-resistant Staphylococcus aureus (MRSA). Further, we aimed to evaluate the cytotoxicity of the PHA/Ch-WS2 nanocomposite using HaCaT cell lines by using a lactate dehydrogenase (LDH) assay. The results demonstrated very significant bactericidal effects of the PHA/Ch-WS2 nanocomposite, and thus, we hypothesize that the nanocomposite would feasibly suit biomedical and sanitizing applications without causing any adverse hazard to the environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。