A nanocomposite competent to overcome cascade drug resistance in ovarian cancer via mitochondria dysfunction and NO gas synergistic therapy

一种能够通过线粒体功能障碍和 NO 气体协同疗法克服卵巢癌级联耐药性的纳米复合材料

阅读:4
作者:Min Zhong, Peiqin Liang, Zhenzhen Feng, Xin Yang, Guang Li, Rui Sun, Lijuan He, Jinxiu Tan, Yangpengcheng Xiao, Zhiqiang Yu, Muhua Yi, Xuefeng Wang

Abstract

Ovarian cancer (OC) is one of the most common and recurring malignancies in gynecology. Patients with relapsed OC always develop "cascade drug resistance" (CDR) under repeated chemotherapy, leading to subsequent failure of chemotherapy. To overcome this challenge, amphiphiles (P1) carrying a nitric oxide (NO) donor (Isosorbide 5-mononitrate, ISMN) and high-density disulfide are synthesized for encapsulating mitochondria-targeted tetravalent platinum prodrug (TPt) to construct a nanocomposite (INP@TPt). Mechanism studies indicated that INP@TPt significantly inhibited drug-resistant cells by increasing cellular uptake and mitochondrial accumulation of platinum, depleting glutathione, and preventing apoptosis escape through generating highly toxic peroxynitrite anion (ONOO-). To better replicate the microenvironmental and histological characteristics of the drug resistant primary tumor, an OC patient-derived tumor xenograft (PDXOC) model in BALB/c nude mice was established. INP@TPt showed the best therapeutic effects in the PDXOC model. The corresponding tumor tissues contained high ONOO- levels, which were attributed to the simultaneous release of O2•- and NO in tumor tissues. Taken together, INP@TPt-based systematic strategy showed considerable potential and satisfactory biocompatibility in overcoming platinum CDR, providing practical applications for ovarian therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。