96 perfusable blood vessels to study vascular permeability in vitro

96 个可灌注血管,用于体外研究血管通透性

阅读:7
作者:V van Duinen, A van den Heuvel, S J Trietsch, H L Lanz, J M van Gils, A J van Zonneveld, P Vulto, T Hankemeier

Abstract

Current in vitro models to test the barrier function of vasculature are based on flat, two-dimensional monolayers. These monolayers do not have the tubular morphology of vasculature found in vivo and lack important environmental cues from the cellular microenvironment, such as interaction with an extracellular matrix (ECM) and exposure to flow. To increase the physiological relevance of in vitro models of the vasculature, it is crucial to implement these cues and better mimic the native three-dimensional vascular architecture. We established a robust, high-throughput method to culture endothelial cells as 96 three-dimensional and perfusable microvessels and developed a quantitative, real-time permeability assay to assess their barrier function. Culture conditions were optimized for microvessel formation in 7 days and were viable for over 60 days. The microvessels exhibited a permeability to 20 kDa dextran but not to 150 kDa dextran, which mimics the functionality of vasculature in vivo. Also, a dose-dependent effect of VEGF, TNFα and several cytokines confirmed a physiologically relevant response. The throughput and robustness of this method and assay will allow end-users in vascular biology to make the transition from two-dimensional to three-dimensional culture methods to study vasculature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。