Anti-hypertensive effect and potential mechanism of gastrodia-uncaria granules based on network pharmacology and experimental validation

基于网络药理学及实验验证天麻钩藤颗粒降压作用及潜在机制

阅读:6
作者:Chu-Hao Liu, Qi-Qi Xue, Yi-Qing Zhang, Dong-Yan Zhang, Yan Li

Abstract

Hypertension has become a major contributor to the morbidity and mortality of cardiovascular diseases worldwide. Despite the evidence of the anti-hypertensive effect of gastrodia-uncaria granules (GUG) in hypertensive patients, little is known about its potential therapeutic targets as well as the underlying mechanism. GUG components were sourced from TCMSP and HERB, with bioactive ingredients screened. Hypertension-related targets were gathered from DisGeNET, OMIM, GeneCards, CTD, and GEO. The STRING database constructed a protein-protein interaction network, visualized by Cytoscape 3.7.1. Core targets were analyzed via GO and KEGG using R package ClusterProfiler. Molecular docking with AutodockVina 1.2.2 revealed favorable binding affinities. In vivo studies on hypertensive mice and rats validated network pharmacology findings. GUG yielded 228 active ingredients and 1190 targets, intersecting with 373 hypertension-related genes. PPI network analysis identified five core genes: AKT1, TNF-α, GAPDH, IL-6, and ALB. Top enriched GO terms and KEGG pathways associated with the anti-hypertensive properties of GUG were documented. Molecular docking indicated stable binding of core components to targets. In vivo study showed that GUG could improve vascular relaxation, alleviate vascular remodeling, and lower blood pressure in hypertensive animal models possibly through inhibiting inflammatory factors such as AKT1, mTOR, and CCND1. Integrated network pharmacology and in vivo experiment showed that GUG may exert anti-hypertensive effects by inhibiting inflammation response, which provides some clues for understanding the effect and mechanisms of GUG in the treatment of hypertension.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。