A general algorithm for consensus 3D cell segmentation from 2D segmented stacks

从二维分割堆栈中一致分割三维细胞的通用算法

阅读:7
作者:Felix Y Zhou, Clarence Yapp, Zhiguo Shang, Stephan Daetwyler, Zach Marin, Md Torikul Islam, Benjamin Nanes, Edward Jenkins, Gabriel M Gihana, Bo-Jui Chang, Andrew Weems, Michael Dustin, Sean Morrison, Reto Fiolka, Kevin Dean, Andrew Jamieson, Peter K Sorger, Gaudenz Danuser

Abstract

Cell segmentation is the fundamental task. Only by segmenting, can we define the quantitative spatial unit for collecting measurements to draw biological conclusions. Deep learning has revolutionized 2D cell segmentation, enabling generalized solutions across cell types and imaging modalities. This has been driven by the ease of scaling up image acquisition, annotation and computation. However 3D cell segmentation, which requires dense annotation of 2D slices still poses significant challenges. Labelling every cell in every 2D slice is prohibitive. Moreover it is ambiguous, necessitating cross-referencing with other orthoviews. Lastly, there is limited ability to unambiguously record and visualize 1000's of annotated cells. Here we develop a theory and toolbox, u-Segment3D for 2D-to-3D segmentation, compatible with any 2D segmentation method. Given optimal 2D segmentations, u-Segment3D generates the optimal 3D segmentation without data training, as demonstrated on 11 real life datasets, >70,000 cells, spanning single cells, cell aggregates and tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。