Autophagic stress activates distinct compensatory secretory pathways in neurons

自噬应激激活神经元中不同的补偿性分泌途径

阅读:7
作者:Sierra D Palumbos, Jacob Popolow, Juliet Goldsmith, Erika L F Holzbaur

Abstract

Autophagic dysfunction is a hallmark of neurodegenerative disease, leaving neurons vulnerable to the accumulation of damaged organelles and proteins. However, the late onset of diseases suggests that compensatory quality control mechanisms may be engaged to delay the deleterious effects induced by compromised autophagy. Neurons expressing common familial Parkinson's disease (PD)-associated mutations in LRRK2 kinase exhibit defective autophagy. Here, we demonstrate that both primary murine neurons and human iPSC-derived neurons harboring pathogenic LRRK2 upregulate the secretion of extracellular vesicles. We used unbiased proteomics to characterize the secretome of LRRK2G2019S neurons and found that autophagic cargos including mitochondrial proteins were enriched. Based on these observations, we hypothesized that autophagosomes are rerouted toward secretion when cell-autonomous degradation is compromised, likely to mediate clearance of undegraded cellular waste. Immunoblotting confirmed the release of autophagic cargos and immunocytochemistry demonstrated that secretory autophagy was upregulated in LRRK2G2019S neurons. We also found that LRRK2G2019S neurons upregulate the release of exosomes containing miRNAs. Live-cell imaging confirmed that this upregulation of exosomal release was dependent on hyperactive LRRK2 activity, while pharmacological experiments indicate that this release staves off apoptosis. Finally, we show that markers of both vesicle populations are upregulated in plasma from mice expressing pathogenic LRRK2. In sum, we find that neurons expressing pathogenic LRRK2 upregulate the compensatory release of secreted autophagosomes and exosomes, to mediate waste disposal and transcellular communication, respectively. We propose that this increased secretion contributes to the maintenance of cellular homeostasis, delaying neurodegenerative disease progression over the short term while potentially contributing to increased neuroinflammation over the longer term.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。