Methanol oxidation by temperate soils and environmental determinants of associated methylotrophs

温带土壤的甲醇氧化和相关甲基营养菌的环境决定因素

阅读:5
作者:Astrid Stacheter, Matthias Noll, Charles K Lee, Mirjam Selzer, Beate Glowik, Linda Ebertsch, Ralf Mertel, Daria Schulz, Niclas Lampert, Harold L Drake, Steffen Kolb

Abstract

The role of soil methylotrophs in methanol exchange with the atmosphere has been widely overlooked. Methanol can be derived from plant polymers and be consumed by soil microbial communities. In the current study, methanol-utilizing methylotrophs of 14 aerated soils were examined to resolve their comparative diversities and capacities to utilize ambient concentrations of methanol. Abundances of cultivable methylotrophs ranged from 10(6)-10(8) gsoilDW(-1). Methanol dissimilation was measured based on conversion of supplemented (14)C-methanol, and occurred at concentrations down to 0.002 μmol methanol gsoilDW(-1). Tested soils exhibited specific affinities to methanol (a(0)s=0.01 d(-1)) that were similar to those of other environments suggesting that methylotrophs with similar affinities were present. Two deep-branching alphaproteobacterial genotypes of mch responded to the addition of ambient concentrations of methanol (0.6 μmol methanol gsoilDW(-1)) in one of these soils. Methylotroph community structures were assessed by amplicon pyrosequencing of genes of mono carbon metabolism (mxaF, mch and fae). Alphaproteobacteria-affiliated genotypes were predominant in all investigated soils, and the occurrence of novel genotypes indicated a hitherto unveiled diversity of methylotrophs. Correlations between vegetation type, soil pH and methylotroph community structure suggested that plant-methylotroph interactions were determinative for soil methylotrophs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。