A subset of chemosensory genes differs between two populations of a specialized leaf beetle after host plant shift

宿主植物转移后,两种特殊叶甲虫种群之间的一组化学感应基因有所不同

阅读:4
作者:Ding Wang, Stefan Pentzold, Maritta Kunert, Marco Groth, Wolfgang Brandt, Jacques M Pasteels, Wilhelm Boland, Antje Burse

Abstract

Due to its fundamental role in shaping host selection behavior, we have analyzed the chemosensory repertoire of Chrysomela lapponica. This specialized leaf beetle evolved distinct populations which shifted from the ancestral host plant, willow (Salix sp., Salicaceae), to birch (Betula rotundifolia, Betulaceae). We identified 114 chemosensory candidate genes in adult C. lapponica: 41 olfactory receptors (ORs), eight gustatory receptors, 17 ionotropic receptors, four sensory neuron membrane proteins, 32 odorant binding proteins (OBPs), and 12 chemosensory proteins (CSP) by RNA-seq. Differential expression analyses in the antennae revealed significant upregulation of one minus-C OBP (Clap OBP27) and one CSP (Clap CSP12) in the willow feeders. In contrast, one OR (Clap OR17), four minus-C OBPs (Clap OBP02, 07, 13, 20), and one plus-C OBP (Clap OBP32) were significantly upregulated in birch feeders. The differential expression pattern in the legs was more complex. To narrow down putative ligands acting as cues for host discrimination, the relative abundance and diversity of volatiles of the two host plant species were analyzed. In addition to salicylaldehyde (willow-specific), both plant species differed mainly in their emission rate of terpenoids such as (E,E)-α-farnesene (high in willow) or 4,8-dimethylnona-1,3,7-triene (high in birch). Qualitatively, the volatiles were similar between willow and birch leaves constituting an "olfactory bridge" for the beetles. Subsequent structural modeling of the three most differentially expressed OBPs and docking studies using 22 host volatiles indicated that ligands bind with varying affinity. We suggest that the evolution of particularly minus-C OBPs and ORs in C. lapponica facilitated its host plant shift via chemosensation of the phytochemicals from birch as novel host plant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。