Development of Gum-Acacia-Stabilized Silver Nanoparticles Gel of Rutin against Candida albicans

阿拉伯胶稳定的银纳米粒子芦丁凝胶对抗白色念珠菌的研制

阅读:5
作者:Mohammed H Alqarni, Ahmed I Foudah, Aftab Alam, Mohammad A Salkini, Magdy M Muharram, Nikolaos E Labrou, Piyush Kumar

Abstract

Candida spp. is one of the most causative pathogens responsible for fungal infections. It is often a hospital-acquired form of sepsis with a very high number of deaths. Currently, the most effective anti-fungal agents are based on polyenes or echinocandins. However, long-term treatments or repeated use of these anti-fungals lead to therapy limitations. Current research is urgently needed to overcome existing challenges for antimicrobials from natural sources. This study aims to determine the anti-fungal activity of rutin, which has the advantage of increasing the therapeutic value. Because of its low solubility in water and oils, rutin is limited in use. To address these constraints, we encapsulated rutin in a nanocarrier system. Silver nanoparticles (SNPs) and gum acacia (GAs) are emerging as attractive components and are widely studied as biologically safe nanomaterials/carrier systems for various drugs. Still, they are barely investigated as nano-sized vectors for the targeted delivery of rutin. In the present work, GA stabilised SNPs of rutin were successfully formulated and evaluated. It was later incorporated into carbapol 940 gels and formed SNP gels. Rutin-SNPs were developed with a consistent size in the nano range of 59.67 ± 44.24 nm in size, 0.295 ± 0.014 polydispersity index (PDI), and -11.2 ± 6.66 mV zeta potential. The drug released was found to be 81. 26 ± 4.06% in 600 min by following zero-order kinetics. The rutin-SNP gel showed considerable activity against C. albicans skin candidiasis at MIC 1.56 g/mL. The developed formulation was biocompatible. This first-ever interdisciplinary study suggests that the rutin-SNPs gel could play a vital role in drug resistance in this fungal pathogen.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。