AGE-induced neuronal cell death is enhanced in G2019S LRRK2 mutation with increased RAGE expression

G2019S LRRK2 突变导致 AGE 诱导的神经元细胞死亡增加,且 RAGE 表达增加

阅读:5
作者:Hyun Jin Cho, Chengsong Xie, Huaibin Cai

Background

Leucine-rich repeat kinase 2 (LRRK2) mutations represent the most common genetic cause of sporadic and familial Parkinson's disease (PD). Especially, LRRK2 G2019S missense mutation has been identified as the most prevalent genetic cause in the late-onset PD. Advanced glycation end products (AGEs) are produced in high amounts in diabetes and diverse aging-related disorders, such as cardiovascular disease, renal disease, and neurological disease. AGEs trigger intracellular signaling pathway associated with oxidative stress and inflammation as well as cell death. RAGE, receptor of AGEs, is activated by interaction with AGEs and mediates AGE-induced cytotoxicity. Whether AGE and RAGE are involved in the pathogenesis of mutant LRRK2 is unknown.

Conclusions

These data suggest that enhanced AGE-RAGE interaction contributes to LRRK2 G2019S mutation-mediated progressive neuronal loss in PD.

Methods

Using cell lines transfected with mutant LRRK2 as well as primary neuronal cultures derived from LRRK2 wild-type (WT) and G2019S transgenic mice, we compared the impact of AGE treatment on the survival of control and mutant cells by immunostaining. We also examined the levels of RAGE proteins in the brains of transgenic mice and PD patients by western blots.

Results

We show that LRRK2 G2019S mutant-expressing neurons were more sensitive to AGE-induced cell death compared to controls. Furthermore, we found that the levels of RAGE proteins were upregulated in LRRK2 G2019S mutant cells. Conclusions: These data suggest that enhanced AGE-RAGE interaction contributes to LRRK2 G2019S mutation-mediated progressive neuronal loss in PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。