Synthesis and Biological Evaluation of New Compounds with Nitroimidazole Moiety

含硝基咪唑类新化合物的合成及生物活性评价

阅读:8
作者:Katarzyna Dziduch, Sara Janowska, Sylwia Andrzejczuk, Paulina Strzyga-Łach, Marta Struga, Marcin Feldo, Oleg Demchuk, Monika Wujec

Abstract

Heterocyclic compounds, particularly those containing azole rings, have shown extensive biological activity, including anticancer, antibacterial, and antifungal properties. Among these, the imidazole ring stands out due to its diverse therapeutic potential. In the presented study, we designed and synthesized a series of imidazole derivatives to identify compounds with high biological potential. We focused on two groups: thiosemicarbazide derivatives and hydrazone derivatives. We synthesized these compounds using conventional methods and confirmed their structures via nuclear magnetic resonance spectroscopy (NMR), MS, and elemental analysis, and then assessed their antibacterial and antifungal activities in vitro using the broth microdilution method against Gram-positive and Gram-negative bacteria, as well as Candida spp. strains. Our results showed that thiosemicarbazide derivatives exhibited varied activity against Gram-positive bacteria, with MIC values ranging from 31.25 to 1000 µg/mL. The hydrazone derivatives, however, did not display significant antibacterial activity. These findings suggest that structural modifications can significantly influence the antimicrobial efficacy of imidazole derivatives, highlighting the potential of thiosemicarbazide derivatives as promising candidates for further development in antibacterial therapies. Additionally, the cytotoxic activity against four cancer cell lines was evaluated. Two derivatives of hydrazide-hydrazone showed moderate anticancer activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。