Elucidation of lipid nanoparticle surface structure in mRNA vaccines

mRNA 疫苗中脂质纳米颗粒表面结构的阐明

阅读:5
作者:Mingzhang Maple Wang, Caitlin N Wappelhorst, Erika L Jensen, Ying-Chih Thomas Chi, Jason C Rouse, Qin Zou

Abstract

Lipid nanoparticles (LNPs) have been used as a carrier for messenger RNA (mRNA) vaccines. Surface properties of LNPs are important to the stability and function of mRNA vaccines. Polyethylene-glycol (PEG) is a functional lipid at the surface of LNPs that improves colloidal stability, increases circulation time, and impacts cellular uptake. In this study, we explore in-depth lipid composition at the surface of mRNA-LNPs using high-field nuclear magnetic resonance (NMR) spectroscopy. Our results provide a unique surface lipid profile of intact LNPs identifying PEG chains and partial ionizable lipids are present with quantification capability. The surface PEG density is determined to reveal the brush-like conformation on the surface of mRNA-LNPs. Furthermore, we implement a diffusion NMR strategy for routine testing of formulated drug products during drug development. Comparative NMR analysis of different vaccine preparations and stability samples provides a global view of the mRNA-LNP surface structure for enhanced product knowledge.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。