Reproduction in deep-sea vent shrimps is influenced by diet, with rhythms apparently unlinked to surface production

深海喷口虾的繁殖受饮食影响,其节律显然与表面生产无关

阅读:4
作者:Pierre Methou, Chong Chen, Hiromi Kayama Watanabe, Marie-Anne Cambon, Florence Pradillon

Abstract

Variations in offspring production according to feeding strategies or food supply have been recognized in many animals from various ecosystems. Despite an unusual trophic structure based on non-photosynthetic primary production, these relationships remain largely under-studied in chemosynthetic ecosystems. Here, we use Rimicaris shrimps as a study case to explore relationships between reproduction, diets, and food supply in these environments. For that, we compared reproductive outputs of three congeneric shrimps differing by their diets. They inhabit vents located under oligotrophic waters of tropical gyres with opposed latitudes, allowing us to also examine the prevalence of phylogenetic vs environmental drivers in their reproductive rhythms. For this, we used both our original data and a compilation of published observations on the presence of ovigerous females covering various seasons over the past 35 years. We report distinct egg production trends between Rimicaris species relying solely on chemosymbiosis-R. exoculata and R. kairei-and one relying on mixotrophy, R. chacei. Besides, our data suggest a reproductive periodicity that does not correspond to seasonal variations in surface production, with substantial proportions of brooding females during the same months of the year, despite those months corresponding to either boreal winter or austral summer depending on the hemisphere. These observations contrast with the long-standing paradigm in deep-sea species for which periodic reproductive patterns have always been attributed to seasonal variations of photosynthetic production sinking from the surface. Our results suggest the presence of an intrinsic basis for biological rhythms in the deep sea, and bring to light the importance of having year-round observations in order to understand the life history of vent animals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。