Neural progenitor cell-derived extracellular matrix as a new platform for neural differentiation of human induced pluripotent stem cells

神经祖细胞衍生的细胞外基质作为人类诱导多能干细胞神经分化的新平台

阅读:7
作者:Marta S Carvalho, Diogo E S Nogueira, Joaquim M S Cabral, Carlos A V Rodrigues

Abstract

The culture microenvironment has been demonstrated to regulate stem cell fate and to be a crucial aspect for quality-controlled stem cell maintenance and differentiation to a specific lineage. In this context, extracellular matrix (ECM) proteins are particularly important to mediate the interactions between the cells and the culture substrate. Human induced pluripotent stem cells (hiPSCs) are usually cultured as anchorage-dependent cells and require adhesion to an ECM substrate to support their survival and proliferation in vitro. Matrigel, a common substrate for hiPSC culture is a complex and undefined mixture of ECM proteins which are expensive and not well suited to clinical application. Decellularized cell-derived ECM has been shown to be a promising alternative to the common protein coatings used in stem cell culture. However, very few studies have used this approach as a niche for neural differentiation of hiPSCs. Here, we developed a new stem cell culture system based on decellularized cell-derived ECM from neural progenitor cells (NPCs) for expansion and neural differentiation of hiPSCs, as an alternative to Matrigel and poly-l-ornithine/laminin-coated well plates. Interestingly, hiPSCs were able to grow and maintain their pluripotency when cultured on decellularized ECM from NPCs (NPC ECM). Furthermore, NPC ECM enhanced the neural differentiation of hiPSCs compared to poly-l-ornithine/laminin-coated wells, which are used in most neural differentiation protocols, presenting a statistically significant enhancement of neural gene expression markers, such as βIII-Tubulin and MAP2. Taken together, our results demonstrate that NPC ECM provides a functional microenvironment, mimicking the neural niche, which may have interesting future applications for the development of new strategies in neural stem cell research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。