Human hepatocytes and cytochrome P450-selective inhibitors predict variability in human drug exposure more accurately than human recombinant P450s

人类肝细胞和细胞色素 P450 选择性抑制剂比人类重组 P450 更准确地预测人类药物暴露的变化

阅读:4
作者:Bo Lindmark, Anna Lundahl, Kajsa P Kanebratt, Tommy B Andersson, Emre M Isin

Background and purpose

Drugs metabolically eliminated by several enzymes are less vulnerable to variable compound exposure in patients due to drug-drug interactions (DDI) or if a polymorphic enzyme is involved in their elimination. Therefore, it is vital in drug discovery to accurately and efficiently estimate and optimize the metabolic elimination profile. Experimental approach: CYP3A and/or CYP2D6 substrates with well described variability in vivo in humans due to CYP3A DDI and CYP2D6 polymorphism were selected for assessment of fraction metabolized by each enzyme (fmCYP ) in two in vitro systems: (i) human recombinant P450s (hrP450s) and (ii) human hepatocytes combined with selective P450 inhibitors. Increases in compound exposure in poor versus extensive CYP2D6 metabolizers and by the strong CYP3A inhibitor ketoconazole were mathematically modelled and predicted changes in exposure were compared with in vivo data. Key

Purpose

Drugs metabolically eliminated by several enzymes are less vulnerable to variable compound exposure in patients due to drug-drug interactions (DDI) or if a polymorphic enzyme is involved in their elimination. Therefore, it is vital in drug discovery to accurately and efficiently estimate and optimize the metabolic elimination profile. Experimental approach: CYP3A and/or CYP2D6 substrates with well described variability in vivo in humans due to CYP3A DDI and CYP2D6 polymorphism were selected for assessment of fraction metabolized by each enzyme (fmCYP ) in two in vitro systems: (i) human recombinant P450s (hrP450s) and (ii) human hepatocytes combined with selective P450 inhibitors. Increases in compound exposure in poor versus extensive CYP2D6 metabolizers and by the strong CYP3A inhibitor ketoconazole were mathematically modelled and predicted changes in exposure were compared with in vivo data. Key

Results

Predicted changes in exposure were within twofold of reported in vivo values using fmCYP estimated in human hepatocytes and there was a strong linear correlation between predicted and observed changes in exposure (r2 = 0.83 for CYP3A, r2 = 0.82 for CYP2D6). Predictions using fmCYP in hrP450s were not as accurate (r2 = 0.55 for CYP3A, r2 = 0.20 for CYP2D6). Conclusions and implications: The results suggest that variability in human drug exposure due to DDI and enzyme polymorphism can be accurately predicted using fmCYP from human hepatocytes and CYP-selective inhibitors. This approach can be efficiently applied in drug discovery to aid optimization of candidate drugs with a favourable metabolic elimination profile and limited variability in patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。