The isoprenoid derivative N6 -benzyladenosine CM223 exerts antitumor effects in glioma patient-derived primary cells through the mevalonate pathway

异戊二烯衍生物 N6-苄基腺苷 CM223 通过甲羟戊酸途径在胶质瘤患者来源的原代细胞中发挥抗肿瘤作用

阅读:7
作者:Elena Ciaglia, Manuela Grimaldi, Mario Abate, Mario Scrima, Manuela Rodriquez, Chiara Laezza, Roberta Ranieri, Simona Pisanti, Pierangela Ciuffreda, Clementina Manera, Patrizia Gazzerro, Anna Maria D'Ursi, Maurizio Bifulco

Background and purpose

N6 -Isopentenyladenosine (i6A) is a modified nucleoside exerting in vitro and in vivo antiproliferative effects. We previously demonstrated that the actions of i6A correlate with the expression and activity of farnesyl pyrophosphate synthase (FPPS), a key enzyme involved in the mevalonate (MVA) pathway, which is aberrant in brain cancer. To develop new anti-glioma strategies, we tested related compounds exhibiting greater activity than i6A. Experimental approach: We designed and synthesized i6A derivatives characterized by the introduction of diverse chemical moieties in the N6 position of adenosine and tested for their efficacy in U87 cells and in primary glioma cultures, derived from patients. NMR-based structural analysis, molecular docking calculations and siRNA mediated knockdown were used to clarify the molecular basis of their action, targeting FPPS protein. Key

Purpose

N6 -Isopentenyladenosine (i6A) is a modified nucleoside exerting in vitro and in vivo antiproliferative effects. We previously demonstrated that the actions of i6A correlate with the expression and activity of farnesyl pyrophosphate synthase (FPPS), a key enzyme involved in the mevalonate (MVA) pathway, which is aberrant in brain cancer. To develop new anti-glioma strategies, we tested related compounds exhibiting greater activity than i6A. Experimental approach: We designed and synthesized i6A derivatives characterized by the introduction of diverse chemical moieties in the N6 position of adenosine and tested for their efficacy in U87 cells and in primary glioma cultures, derived from patients. NMR-based structural analysis, molecular docking calculations and siRNA mediated knockdown were used to clarify the molecular basis of their action, targeting FPPS protein. Key

Results

CM223, the i6A derivative including a benzyl moiety in N6 position of adenine, showed marked activity in selectively targeting glioma cells, but not normal human astrocytes. This was due to induction of intrinsic pathways of apoptosis and inhibition of proliferation, along with blockade of FPPS-dependent protein prenylation, which counteracted oncogenic signalling mediated by EGF receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。