G9a orchestrates PCL3 and KDM7A to promote histone H3K27 methylation

G9a 协调 PCL3 和 KDM7A 促进组蛋白 H3K27 甲基化

阅读:8
作者:Mei-Ren Pan, Ming-Chuan Hsu, Li-Tzong Chen, Wen-Chun Hung

Abstract

Methylation of histone H3-lysine 9 (H3K9) and H3K27 by the methyltransferase G9a and polycomb repressive complex 2 (PRC2) inhibits transcription of target genes. A crosstalk between G9a and PRC2 via direct physical interaction has been shown recently. Here, we demonstrate an alternative mechanism by which G9a promotes H3K27 methylation. Overexpression of G9a increases both H3K9 and H3K27 methylation, reduces E-cadherin expression, and induces epithelial-mesenchymal transition in PANC-1 pancreatic cancer cells. Conversely, the depletion of G9a or ectopic expression of methyltransferase-dead G9a in G9a-overexpressing gemcitabine-resistant PANC-1-R cells exhibits opposite effects. G9a promotes H3K27 methylation of the E-cadherin promoter by upregulating PCL3 to increase PRC2 promoter recruitment and by downregulating the H3K27 demethylase KDM7A to silence E-cadherin gene. The depletion of PCL3 or overexpression of KDM7A elevated expression of E-cadherin in PANC-1-R cells while ectopic expression of PCL3 or knockdown of KDM7A downregulated E-cadherin in PANC-1 cells. Collectively, we provide evidence that G9a orchestrates the dynamic balance within histone-modifying enzymes to regulate H3K27 methylation and gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。