Development of a radioiodinated apoptosis-inducing ligand, rhTRAIL, and a radiolabelled agonist TRAIL receptor antibody for clinical imaging studies

开发放射性碘标记的凋亡诱导配体 rhTRAIL 和放射性标记的激动剂 TRAIL 受体抗体,用于临床成像研究

阅读:7
作者:E W Duiker, E C F Dijkers, H Lambers Heerspink, S de Jong, A G J van der Zee, P L Jager, J G W Kosterink, E G E de Vries, M N Lub-de Hooge

Background and purpose

The TNF-related apoptosis inducing ligand (TRAIL) induces apoptosis through activation of the death receptors, TRAIL-R1 and TRAIL-R2. Recombinant human (rh) TRAIL and the TRAIL-R1 directed monoclonal antibody mapatumumab are currently clinically evaluated as anticancer agents. The objective of this study was to develop radiopharmaceuticals targeting the TRAIL-R1, suitable for clinical use to help understand and predict clinical efficacy in patients. Experimental approach: rhTRAIL was radioiodinated with (125) I, and conjugated mapatumumab was radiolabelled with (111) In. The radiopharmaceuticals were characterized, their in vitro stability and death receptor targeting capacities were determined and in vivo biodistribution was studied in nude mice bearing human tumour xenografts with different expression of TRAIL-R1. Key

Purpose

The TNF-related apoptosis inducing ligand (TRAIL) induces apoptosis through activation of the death receptors, TRAIL-R1 and TRAIL-R2. Recombinant human (rh) TRAIL and the TRAIL-R1 directed monoclonal antibody mapatumumab are currently clinically evaluated as anticancer agents. The objective of this study was to develop radiopharmaceuticals targeting the TRAIL-R1, suitable for clinical use to help understand and predict clinical efficacy in patients. Experimental approach: rhTRAIL was radioiodinated with (125) I, and conjugated mapatumumab was radiolabelled with (111) In. The radiopharmaceuticals were characterized, their in vitro stability and death receptor targeting capacities were determined and in vivo biodistribution was studied in nude mice bearing human tumour xenografts with different expression of TRAIL-R1. Key

Results

Labelling efficiencies, radiochemical purity, stability and binding properties were optimized for the radioimmunoconjugates. In vivo biodistribution showed rapid renal clearance of [(125) I]rhTRAIL, with highest kidney activity at 15 min and almost no detectable activity after 4 h. Activity rapidly decreased in almost all organs, except for the xenografts. Radiolabelled mapatumumab showed blood clearance between 24 and 168 h and a reduced decrease in radioactivity in the high receptor expression xenograft. Conclusions and implications: rhTRAIL and mapatumumab can be efficiently radiolabelled. The new radiopharmaceuticals can be used clinically to study pharmacokinetics, biodistribution and tumour targeting, which could support evaluation of the native targeted agents in phase I/II trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。