Perivascular adipose tissue-derived relaxing factors: release by peptide agonists via proteinase-activated receptor-2 (PAR2) and non-PAR2 mechanisms

血管周围脂肪组织衍生的舒张因子:肽激动剂通过蛋白酶激活受体-2 (PAR2) 和非 PAR2 机制释放

阅读:8
作者:Y Li, K Mihara, M Saifeddine, A Krawetz, D C W Lau, H Li, H Ding, C R Triggle, M D Hollenberg

Background and purpose

We hypothesized that proteinase-activated receptor-2 (PAR2)-mediated vasorelaxation in murine aorta tissue can be due in part to the release of adipocyte-derived relaxing factors (ADRFs). Experimental approach: Aortic rings from obese TallyHo and C57Bl6 intact or PAR2-null mice either without or with perivascular adipose tissue (PVAT) were contracted with phenylephrine and relaxation responses to PAR2-selective activating peptides (PAR2-APs: SLIGRL-NH(2) and 2-furoyl-LIGRLO-NH(2) ), trypsin and to PAR2-inactive peptides (LRGILS-NH(2) , 2-furoyl-OLRGIL-NH(2) and LSIGRL-NH(2) ) were measured. Relaxation was monitored in the absence or presence of inhibitors that either alone or in combination were previously shown to inhibit ADRF-mediated responses: L-NAME (NOS), indomethacin (COX), ODQ (guanylate cyclase), catalase (H(2) O(2) ) and the K(+) channel-targeted reagents, apamin, charybdotoxin, 4-aminopyridine and glibenclamide. Key

Conclusions

Distinct ADRFs that may modulate vascular tone in pathophysiological settings can be released from murine PVAT by both PAR2-dependent and PAR2-independent mechanisms.

Purpose

We hypothesized that proteinase-activated receptor-2 (PAR2)-mediated vasorelaxation in murine aorta tissue can be due in part to the release of adipocyte-derived relaxing factors (ADRFs). Experimental approach: Aortic rings from obese TallyHo and C57Bl6 intact or PAR2-null mice either without or with perivascular adipose tissue (PVAT) were contracted with phenylephrine and relaxation responses to PAR2-selective activating peptides (PAR2-APs: SLIGRL-NH(2) and 2-furoyl-LIGRLO-NH(2) ), trypsin and to PAR2-inactive peptides (LRGILS-NH(2) , 2-furoyl-OLRGIL-NH(2) and LSIGRL-NH(2) ) were measured. Relaxation was monitored in the absence or presence of inhibitors that either alone or in combination were previously shown to inhibit ADRF-mediated responses: L-NAME (NOS), indomethacin (COX), ODQ (guanylate cyclase), catalase (H(2) O(2) ) and the K(+) channel-targeted reagents, apamin, charybdotoxin, 4-aminopyridine and glibenclamide. Key

Results

Endothelium-intact PVAT-free preparations did not respond to PAR2-inactive peptides (LRGILS-NH(2) , LSIGRL-NH(2) , 2-furoyl-OLRGIL-NH(2) ), whereas active PAR2-APs (SLIGRL-NH(2) ; 2-furoyl-LIGRLO-NH(2) ) caused an L-NAME-inhibited relaxation. However, in PVAT-containing preparations treated with L-NAME/ODQ/indomethacin together, both PAR2-APs and trypsin caused relaxant responses in PAR2-intact, but not PAR2-null-derived tissues. The PAR2-induced PVAT-dependent relaxation (SLIGRL-NH(2) ) persisted in the presence of apamin plus charybdotoxin, 4-aminopyridine and glibenclamide, but was blocked by catalase, implicating a role for H(2) O(2) . Surprisingly, the PAR2-inactive peptides, LRGILS-NH(2) and 2-furoyl-OLRGIL-NH(2) (but not LSIGRL-NH(2) ), caused relaxation in PVAT-containing preparations from both PAR2-null and PAR2-intact (C57Bl, TallyHo) mice. The LRGILS-NH(2) -induced relaxation was distinct from the PAR2 response, being blocked by 4-aminopyridine, but not catalase. Conclusions: Distinct ADRFs that may modulate vascular tone in pathophysiological settings can be released from murine PVAT by both PAR2-dependent and PAR2-independent mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。