Intravenous injection of adipose-derived mesenchymal stromal cells benefits gait and inflammation in a spontaneous osteoarthritis model

静脉注射脂肪间充质基质细胞有益于自发性骨关节炎模型的步态和炎症

阅读:5
作者:Maryam F Afzali, Stephen C Pannone, Richard B Martinez, Margaret A Campbell, Joseph L Sanford, Lynn M Pezzanite, Jade Kurihara, Valerie Johnson, Steven W Dow, Kelly S Santangelo

Abstract

Osteoarthritis (OA) is a leading cause of morbidity among aging populations, yet symptom and/or disease-modification remains elusive. Adipose-derived mesenchymal stromal cells (adMSCs) have demonstrated immunomodulatory and anti-inflammatory properties that may alleviate clinical signs and interrupt disease onset and progression. Indeed, multiple manuscripts have evaluated intra-articular administration of adMSCs as a therapeutic; however, comparatively few evaluations of systemic delivery methods have been published. Therefore, the aim of this study was to evaluate the short-term impact of intravenous (IV) delivery of allogeneic adMSCs in an established model of spontaneous OA, the Hartley guinea pig. Animals with moderate OA received once weekly injections of 2 × 106 adMSCs or vehicle control for 4 weeks in peripheral veins; harvest occurred 2 weeks after the final injection. Systemic administration of adMSCs resulted in no adverse effects and was efficacious in reducing clinical signs of OA (as assessed by computer-aided gait analysis) compared to control injected animals. Further, there were significant decreases in key inflammatory mediators (including monocyte chemoattractant protein-1, tumor necrosis factor, and prostaglandin E2 ) both systemically (liver, kidney, and serum) and locally in the knee (joint tissues and synovial fluid) in animals treated with IV adMSCs relative to controls (as per enzyme-linked immunosorbent assay and/or immunohistochemistry, dictated by tissue sample). Thus, systemic administration of adMSCs by IV injection significantly improved gait parameters and reduced both systemic and intra-articular inflammatory mediators in animals with OA. These findings demonstrate the potential utility of alternative delivery approaches for cellular therapy of OA, particularly for patients with multiple affected joints.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。