Intermittent Hypoxia and Hypercapnia Alter Diurnal Rhythms of Luminal Gut Microbiome and Metabolome

间歇性缺氧和高碳酸血症改变肠道微生物组和代谢组的昼夜节律

阅读:5
作者:Celeste Allaband, Amulya Lingaraju, Cameron Martino, Baylee Russell, Anupriya Tripathi, Orit Poulsen, Ana Carolina Dantas Machado, Dan Zhou, Jin Xue, Emmanuel Elijah, Atul Malhotra, Pieter C Dorrestein, Rob Knight, Gabriel G Haddad, Amir Zarrinpar1

Abstract

Obstructive sleep apnea (OSA), characterized by intermittent hypoxia and hypercapnia (IHC), affects the composition of the gut microbiome and metabolome. The gut microbiome has diurnal oscillations that play a crucial role in regulating circadian and overall metabolic homeostasis. Thus, we hypothesized that IHC adversely alters the gut luminal dynamics of key microbial families and metabolites. The objective of this study was to determine the diurnal dynamics of the fecal microbiome and metabolome of Apoe-/- mice after a week of IHC exposure. Individually housed, 10-week-old Apoe-/- mice on an atherogenic diet were split into two groups. One group was exposed to daily IHC conditions for 10 h (Zeitgeber time 2 [ZT2] to ZT12), while the other was maintained in room air. Six days after the initiation of the IHC conditions, fecal samples were collected every 4 h for 24 h (6 time points). We performed 16S rRNA gene amplicon sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS) to assess changes in the microbiome and metabolome. IHC induced global changes in the cyclical dynamics of the gut microbiome and metabolome. Ruminococcaceae, Lachnospiraceae, S24-7, and Verrucomicrobiaceae had the greatest shifts in their diurnal oscillations. In the metabolome, bile acids, glycerolipids (phosphocholines and phosphoethanolamines), and acylcarnitines were greatly affected. Multi-omic analysis of these results demonstrated that Ruminococcaceae and tauro-β-muricholic acid (TβMCA) cooccur and are associated with IHC conditions and that Coriobacteriaceae and chenodeoxycholic acid (CDCA) cooccur and are associated with control conditions. IHC significantly change the diurnal dynamics of the fecal microbiome and metabolome, increasing members and metabolites that are proinflammatory and proatherogenic while decreasing protective ones. IMPORTANCE People with obstructive sleep apnea are at a higher risk of high blood pressure, type 2 diabetes, cardiac arrhythmias, stroke, and sudden cardiac death. We wanted to understand whether the gut microbiome changes induced by obstructive sleep apnea could potentially explain some of these medical problems. By collecting stool from a mouse model of this disease at multiple time points during the day, we studied how obstructive sleep apnea changed the day-night patterns of microbes and metabolites of the gut. Since the oscillations of the gut microbiome play a crucial role in regulating metabolism, changes in these oscillations can explain why these patients can develop so many metabolic problems. We found changes in microbial families and metabolites that regulate many metabolic pathways contributing to the increased risk for heart disease seen in patients with obstructive sleep apnea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。