Identification of Novel microRNA Prognostic Markers Using Cascaded Wx, a Neural Network-Based Framework, in Lung Adenocarcinoma Patients

使用基于神经网络的框架 Cascaded Wx 在肺腺癌患者中识别新型 microRNA 预后标记物

阅读:6
作者:Jeong Seon Kim, Sang Hoon Chun, Sungsoo Park, Sieun Lee, Sae Eun Kim, Ji Hyung Hong, Keunsoo Kang, Yoon Ho Ko, Young-Ho Ahn

Abstract

The evolution of next-generation sequencing technology has resulted in a generation of large amounts of cancer genomic data. Therefore, increasingly complex techniques are required to appropriately analyze this data in order to determine its clinical relevance. In this study, we applied a neural network-based technique to analyze data from The Cancer Genome Atlas and extract useful microRNA (miRNA) features for predicting the prognosis of patients with lung adenocarcinomas (LUAD). Using the Cascaded Wx platform, we identified and ranked miRNAs that affected LUAD patient survival and selected the two top-ranked miRNAs (miR-374a and miR-374b) for measurement of their expression levels in patient tumor tissues and in lung cancer cells exhibiting an altered epithelial-to-mesenchymal transition (EMT) status. Analysis of miRNA expression from tumor samples revealed that high miR-374a/b expression was associated with poor patient survival rates. In lung cancer cells, the EMT signal induced miR-374a/b expression, which, in turn, promoted EMT and invasiveness. These findings demonstrated that this approach enabled effective identification and validation of prognostic miRNA markers in LUAD, suggesting its potential efficacy for clinical use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。