N-terminus α-synuclein detection reveals new and more diverse aggregate morphologies in multiple system atrophy and Parkinson's disease

端 α-突触核蛋白检测揭示了多系统萎缩和帕金森病中新的、更加多样化的聚集形态

阅读:10
作者:James A Wiseman, YuHong Fu, Richard L M Faull, Clinton P Turner, Maurice A Curtis, Glenda M Halliday, Birger V Dieriks

Background

Parkinson's disease (PD) and multiple system atrophy (MSA) are classified as α-synucleinopathies and are primarily differentiated by their clinical phenotypes. Delineating these diseases based on their specific α-synuclein (α-Syn) proteoform pathologies is crucial for accurate antemortem biomarker diagnosis. Newly identified α-Syn pathologies in PD raise questions about whether MSA exhibits a similar diversity. This prompted the need for a comparative study focusing on α-Syn epitope-specific immunoreactivities in both diseases, which could clarify the extent of pathological overlap and diversity, and guide more accurate biomarker development.

Conclusions

These findings underscore the necessity of utilising a multiplex approach to detect α-Syn, most importantly including the N-terminus, to capture the entire spectrum of α-Syn proteoforms in α-synucleinopathies. The data provide novel insights toward the biological differentiation of these α-synucleinopathies and pave the way for more refined antemortem diagnostic methods to facilitate early identification and intervention of these neurodegenerative diseases.

Methods

We utilised a multiplex immunohistochemical approach to detect multiple structural domains of α-Syn proteoforms across multiple regions prone to pathological accumulation in MSA (n = 10) and PD (n = 10). Comparison of epitope-specific α-Syn proteoforms was performed in the MSA medulla, inferior olivary nucleus, substantia nigra, hippocampus, and cerebellum, and in the PD olfactory bulb, medulla, substantia nigra, hippocampus, and entorhinal cortex.

Results

N-terminus and C-terminus antibodies detected significantly more α-Syn pathology in MSA than antibodies for phosphorylated (pS129) α-Syn, which are classically used to detect α-Syn. Importantly, C-terminus immunolabelling is more pronounced in MSA compared to PD. Meanwhile, N-terminus immunolabelling consistently detected the highest percentage of α-Syn across pathologically burdened regions of both diseases, which could be of biological significance. As expected, oligodendroglial involvement distinguished MSA from PD, but in contrast to PD, no substantial astrocytic or microglial α-Syn accumulation in MSA occurred. These data confirm glial-specific changes between these diseases when immunolabelling the N-terminus epitope. In comparison, N-terminus neuronal α-Syn was present in PD and MSA, with most MSA neurons lacking pS129 α-Syn proteoforms. This explains why characterisation of neuronal MSA pathologies is lacking and challenges the reliance on pS129 antibodies for the accurate quantification of α-Syn pathological load across α-synucleinopathies. Conclusions: These findings underscore the necessity of utilising a multiplex approach to detect α-Syn, most importantly including the N-terminus, to capture the entire spectrum of α-Syn proteoforms in α-synucleinopathies. The data provide novel insights toward the biological differentiation of these α-synucleinopathies and pave the way for more refined antemortem diagnostic methods to facilitate early identification and intervention of these neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。