Three-Dimensional Printing of Calcium Carbonate/Hydroxyapatite Scaffolds at Low Temperature for Bone Tissue Engineering

低温三维打印碳酸钙/羟基磷灰石支架用于骨组织工程

阅读:9
作者:Tiandi Wang, Jianchao Zheng, Tianzhou Hu, Hongbo Zhang, Kun Fu, Ruixue Yin, Wenjun Zhang

Abstract

Three-dimensional (3D) printing technology has been applied to fabricate bone tissue engineering scaffolds for a wide range of materials with precisely control over scaffold structures. Coral is a potential bone repair and bone replacement material. Due to the natural source limitation of coral, we developed a fabrication protocol for 3D printing of calcium carbonate (CaCO3) nanoparticles for coral replacement in the application of bone tissue engineering. Up to 80% of CaCO3 nanoparticles can be printed with high resolution using poly-l-lactide as a blender. The scaffolds were subjected to a controlled hydrothermal process for incomplete conversion of carbonate to phosphate to produce CaCO3 scaffold covered by hydroxyapatite (HA) to modify the biocompatibility and degradation of CaCO3/HA scaffolds. X-ray diffraction and Fourier transform infrared spectroscopy showed that HA was converted and attached to the surface of the scaffold, and the surface morphology and microstructure were studied using a scanning electron microscope. To confirm the bone regeneration performance of the scaffold, cell proliferation and osteogenic differentiation of MC3T3 cells on the scaffold were evaluated. In addition, in vivo experiments showed that CaCO3/HA scaffolds can promote bone growth and repairing process and has high potential in bone tissue engineering. ClinicalTrials.gov ID: SH9H-2020-A603.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。