One-Pot Synthesis of Cellulose/MXene/PVA Foam for Efficient Methylene Blue Removal

纤维素/MXene/PVA 泡沫的一步合成可有效去除亚甲蓝

阅读:8
作者:Weisong Zhao, Hong Chi, Shiyun Zhang, Xue Zhang, Tianduo Li

Abstract

Ti3C2Tx MXene has attracted considerable interest as a new emerging two-dimensional material for environmental remediation due to its high adsorption capacity. However, its use is greatly limited by its poor mechanical properties, low processability and recyclability, and the low dispersity of such powder materials. In this work, a porous adsorbent (C-CMP) containing cellulose nanocrystals (CNC), Ti3C2Tx MXene and polyvinyl alcohol (PVA) was prepared by a simple and environmentally-friendly foaming method. Glutaraldehyde was used as crosslinker to improve the mechanical properties and boost the adsorption efficiency of methylene blue (MB) molecules. Fourier transform infrared (FT-IR), elemental analysis (EDX) and thermogravimetric analysis (TGA) further confirmed that the preparation of the C-CMP foam and cross-linking reaction were successful. Scanning electron microscope (SEM) indicated that the macropores were distributed homogeneously. The adsorption experiment showed that maximum adsorption capacity of MB can reach 239.92 mg·g-1 which was much higher than anionic dye (methyl orange, 45.25 mg·g-1). The adsorption behavior fitted well with the Langmuir isotherm and pseudo-second-order kinetic models. Thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. Based on FT-IR, EDX and X-ray photoelectron spectroscopy (XPS) analysis, the adsorption mechanism between C-CMP and MB molecules was attributed to electrostatic interaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。