Corelease of Genotoxic Polycyclic Aromatic Hydrocarbons and Nanoparticles from a Commercial Aircraft Jet Engine - Dependence on Fuel and Thrust

商用飞机喷气发动机中基因毒性多环芳烃和纳米颗粒的共同释放 - 取决于燃料和推力

阅读:9
作者:Norbert V Heeb, Maria Muñoz, Regula Haag, Simon Wyss, David Schönenberger, Lukas Durdina, Miriam Elser, Frithjof Siegerist, Joachim Mohn, Benjamin T Brem

Abstract

Jet engines are important contributors to global CO2 emissions and release enormous numbers of ultrafine particles into different layers of the atmosphere. As a result, aviation emissions are affecting atmospheric chemistry and promote contrail and cloud formation with impacts on earth's radiative balance and climate. Furthermore, the corelease of nanoparticles together with carcinogenic polycyclic aromatic hydrocarbons (PAHs) affects air quality at airports. We studied exhausts of a widely used turbofan engine (CFM56-7B26) operated at five static thrust levels (idle, 7, 30, 65, and 85%) with conventional Jet A-1 fuel and a biofuel blend composed of hydro-processed esters and fatty acids (HEFA). The particles released, the chemical composition of condensable material, and the genotoxic potential of these exhausts were studied. At ground operation, particle number emissions of 3.5 and 0.5 × 1014 particles/kg fuel were observed with highest genotoxic potentials of 41300 and 8800 ng toxicity equivalents (TEQ)/kg fuel at idle and 7% thrust, respectively. Blending jet fuel with HEFA lowered PAH and particle emissions by 7-34% and 65-67% at idle and 7% thrust, respectively, indicating that the use of paraffin-rich biofuels is an effective measure to reduce the exposure of airport personnel to nanoparticles coated with genotoxic PAHs (Trojan horse effect).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。