Omics-Driven Systems Interrogation of Metabolic Dysregulation in COVID-19 Pathogenesis

组学驱动系统探究 COVID-19 发病机制中的代谢失调

阅读:5
作者:Jin-Wen Song, Sin Man Lam, Xing Fan, Wen-Jing Cao, Si-Yu Wang, He Tian, Gek Huey Chua, Chao Zhang, Fan-Ping Meng, Zhe Xu, Jun-Liang Fu, Lei Huang, Peng Xia, Tao Yang, Shaohua Zhang, Bowen Li, Tian-Jun Jiang, Raoxu Wang, Zehua Wang, Ming Shi, Ji-Yuan Zhang, Fu-Sheng Wang, Guanghou Shui

Abstract

The coronavirus disease 2019 (COVID-19) pandemic presents an unprecedented threat to global public health. Herein, we utilized a combination of targeted and untargeted tandem mass spectrometry to analyze the plasma lipidome and metabolome in mild, moderate, and severe COVID-19 patients and healthy controls. A panel of 10 plasma metabolites effectively distinguished COVID-19 patients from healthy controls (AUC = 0.975). Plasma lipidome of COVID-19 resembled that of monosialodihexosyl ganglioside (GM3)-enriched exosomes, with enhanced levels of sphingomyelins (SMs) and GM3s, and reduced diacylglycerols (DAGs). Systems evaluation of metabolic dysregulation in COVID-19 was performed using multiscale embedded differential correlation network analyses. Using exosomes isolated from the same cohort, we demonstrated that exosomes of COVID-19 patients with elevating disease severity were increasingly enriched in GM3s. Our work suggests that GM3-enriched exosomes may partake in pathological processes related to COVID-19 pathogenesis and presents the largest repository on the plasma lipidome and metabolome distinct to COVID-19.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。