Empagliflozin and dapagliflozin decreased atrial monoamine oxidase expression and alleviated oxidative stress in overweight non-diabetic cardiac patients

恩格列净和达格列净可降低超重非糖尿病心脏病患者的心房单胺氧化酶表达并减轻氧化应激

阅读:12
作者:Loredana N Ionică, Darius G Buriman, Adina V Lința, Raluca Șoșdean, Ana Lascu, Caius G Streian, Horea B Feier, Lucian Petrescu, Ioana M Mozoș, Adrian Sturza, Danina M Muntean

Abstract

The sodium-glucose-cotransporter 2 inhibitors (SGLT2i) are the blockbuster antidiabetic drugs that exert cardiovascular protection via pleiotropic effects. We have previously demonstrated that empagliflozin decreased monoamine oxidase (MAO) expression and oxidative stress in human mammary arteries. The present study performed in overweight, non-diabetic cardiac patients was aimed to assess whether the two widely prescribed SGLT2i decrease atrial MAO expression and alleviate oxidative stress elicited by exposure to angiotensin 2 (ANG2) and high glucose (GLUC). Right atrial appendages isolated during cardiac surgery were incubated ex vivo with either empagliflozin or dapagliflozin (1, 10 µm, 12 h) in the presence or absence of ANG2 (100 nm) and GLUC (400 mg/dL) and used for the evaluation of MAO-A and MAO-B expression and ROS production. Stimulation with ANG2 and GLUC increased atrial expression of both MAOs and oxidative stress; the effects were significantly decreased by the SGLT2i. Atrial oxidative stress positively correlated with the echocardiographic size of heart chambers and negatively with the left ventricular ejection fraction. In overweight patients, MAO contributes to cardiac oxidative stress in basal conditions and those that mimicked the renin-angiotensin system activation and hyperglycemia and can be targeted with empagliflozin and dapagliflozin, as novel off-target class effect of the SGLT2i.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。