In vivo imaging demonstrates dendritic spine stabilization by SynCAM 1

体内成像显示 SynCAM 1 可稳定树突棘

阅读:6
作者:Nils Körber, Valentin Stein

Abstract

Formation and stability of synapses are required for proper brain function. While it is well established that synaptic adhesion molecules are important regulators of synapse formation, their specific role during different phases of synapse development remains unclear. To investigate the function of the synaptic cell adhesion molecule SynCAM 1 in the formation, stability, and maintenance of spines we used 2-photon in vivo imaging to follow individual spines over a long period of time. In SynCAM 1 knockout mice the survival rate of existing spines was reduced and fewer filopodia-like structures were converted into stable spines. SynCAM 1(flag) overexpression resulted in more stable spines and fewer filopodia-like structures. When SynCAM 1(flag) overexpression is turned on the spine density rapidly increases within a few days. Interestingly, the spine density stayed at an elevated level when SynCAM 1(flag) overexpression was turned off. Our data indicate that the SynCAM 1 induced altered spine density is not caused by the formation of newly emerging protrusions, instead SynCAM 1 stabilizes nascent synaptic contacts which promotes their maturation. Concomitant with the synaptic stabilization, SynCAM 1 generally prolongs the lifetime of spines. In summary, we demonstrate that SynCAM 1 is a key regulator of spine stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。