B Cell Production of Both OPG and RANKL is Significantly Increased in Aged Mice

老年小鼠中 OPG 和 RANKL 的 B 细胞生成均显著增加

阅读:6
作者:Yan Li, Masakazu Terauchi, Tatyana Vikulina, Susanne Roser-Page, M N Weitzmann

Abstract

Aging is a risk factor for osteoclastic bone loss and bone fracture. Receptor activator of NF-κB ligand (RANKL) is the key effector cytokine for osteoclastogenesis and bone resorption, and is moderated by its decoy receptor osteoprotegerin (OPG). The development of an inflammatory environment during aging leads to increased bone resorption and loss of bone mineral density (BMD). Interestingly, animal and clinical studies show that OPG is actually increased in aging but fails to fully compensate for endogenous RANKL. Osteoblast- and B-lineage cells are significant sources of physiological OPG, however osteoblast OPG production declines with age, suggesting that elevated OPG in aging may be a consequence of changes in B cell function. In this study we examined BMD and indices of trabecular bone structure during aging, and B cell production of both RANKL and OPG in young and aged mice. Our data reveal significant loss of BMD and trabecular structure with age commensurate with significantly elevated concentrations of both OPG and RANKL in aged mice, and a decline in B cell populations in aged animals. Taken together our data suggest that B cells may be responsible for the elevated concentrations of OPG during aging and are essential to counteract excessive age-associated bone resorption. Paradoxically, B cells themselves likely contribute RANKL in aging and the loss of B cells with age may further contribute to the imbalance in OPG relative to RANKL that predisposes age-associated bone loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。