Improving maize's N uptake and N use efficiency by strengthening roots' absorption capacity when intercropped with legumes

玉米与豆科植物间作时通过增强根系吸收能力来提高玉米的氮吸收和氮利用效率

阅读:5
作者:Benchuan Zheng #, Xiaona Zhang #, Ping Chen, Qing Du, Ying Zhou, Huan Yang, Xiaochun Wang, Feng Yang, Taiwen Yong, Wenyu Yang

Abstract

Maize's nitrogen (N) uptake can be improved through maize-legume intercropping. N uptake mechanisms require further study to better understand how legumes affect root growth and to determine maize's absorptive capacity in maize-legume intercropping. We conducted a two-year field experiment with two N treatments (zero N (N0) and conventional N (N1)) and three planting patterns (monoculture maize (Zea mays L.) (MM), maize-soybean (Glycine max L. Merr.) strip intercropping (IMS), and maize-peanut (Arachis hypogaea L.) strip intercropping (IMP)). We sought to understand maize's N uptake mechanisms by investigating root growth and distribution, root uptake capacity, antioxidant enzyme activity, and the antioxidant content in different maize-legume strip intercropping systems. Our results showed that on average, the N uptake of maize was significantly greater by 52.5% in IMS and by 62.4% in IMP than that in MM. The average agronomic efficiency (AE) of maize was increased by 110.5 % in IMS and by 163.4 % in IMP, compared to MM. The apparent recovery efficiency (RE) of maize was increased by 22.3% in IMS. The roots of intercropped maize were extended into soybean and peanut stands underneath the space and even between the inter-rows of legume, resulting in significantly increased root surface area density (RSAD) and total root biomass. The root-bleeding sap intensity of maize was significantly increased by 22.7-49.3% in IMS and 37.9-66.7% in IMP, compared with the MM. The nitrate-N content of maize bleeding sap was significantly greater in IMS and IMP than in MM during the 2018 crop season. The glutathione (GSH) content, superoxide dismutase (SOD), and catalase (CAT) activities in the root significantly increased in IMS and IMP compared to MM. Strip intercropping using legumes increases maize's aboveground N uptake by promoting root growth and spatial distribution, delaying root senescence, and strengthening root uptake capacity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。