The effect of low intensity pulsed ultrasound on mandibular condylar growth in young adult rats

低强度脉冲超声对幼年大鼠下颌髁突生长的影响

阅读:5
作者:Yasamin Hadaegh, Hasan Uludag, Douglas Dederich, Tarek H El-Bialy

Abstract

There is a need for more effective methods to enhance mandibular growth in young adults with mandibular deficiency. Previous studies suggest that low intensity pulsed ultrasound (LIPUS) can enhance mandibular growth in growing individuals. This study aimed to evaluate the potential growth changes of the mandible following 4-week LIPUS application in young adult rats. Nineteen ≈120-day-old female rats were allocated to experimental (n = 10) and control (n = 9) groups. The animals in the experimental group were treated with LIPUS to their temporomandibular joints (TMJs) bilaterally, 20 min each day for 28 consecutive days. Animals were then euthanized; gross morphological evaluation was performed on 2D photographs and 3D virtual models of hemi-mandibles, and microstructural assessment was done for the mandibular condyle (MC). Evaluation of mineralization and microarchitecture properties of subchondral cancellous bone was performed by micro-computed tomography (μCT) scanning. Qualitative and histomorphometric analysis was done on condylar cartilage and subchondral bone following Alcian Blue/PAS and Goldner's Trichrome staining. Vital flourochrome (calcein green) labeling was also utilized to determine the amount of endochondral bone growth. Gross morphological evaluations showed a slight statistically non-significant increase especially in the main condylar growth direction in the LIPUS group. Moreover, 3D evaluation depicted an enhanced periosteal bone apposition at the site of LIPUS application. Microstructural analysis revealed that LIPUS stimulates both chondrogenesis and osteogenesis and enhances endochondral bone formation in young adult rat MC. Furthermore, the effect of LIPUS on osteogenic cells of subchondral cancellous bone was notable. To conclude, LIPUS can enhance young adult rats' MC residual growth potential.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。