Improvement of Cell Permeability of Human Neuronal Nitric Oxide Synthase Inhibitors Using Potent and Selective 2-Aminopyridine-Based Scaffolds with a Fluorobenzene Linker

使用具有氟苯接头的强效和选择性 2-氨基吡啶基支架改善人类神经元一氧化氮合酶抑制剂的细胞通透性

阅读:7
作者:Ha T Do, Heng-Yen Wang, Huiying Li, Georges Chreifi, Thomas L Poulos, Richard B Silverman

Abstract

Inhibition of neuronal nitric oxide synthase (nNOS) is a promising therapeutic approach to treat neurodegenerative diseases. Recently, we have achieved considerable progress in improving the potency and isoform selectivity of human nNOS inhibitors bearing a 2-aminopyridine scaffold. However, these inhibitors still suffered from too low cell membrane permeability to enter into CNS drug development. We report herein our studies to improve permeability of nNOS inhibitors as measured by both PAMPA-BBB and Caco-2 assays. The most permeable compound (12) in this study still preserves excellent potency with human nNOS (Ki = 30 nM) and very high selectivity over other NOS isoforms, especially human eNOS (hnNOS/heNOS = 2799, the highest hnNOS/heNOS ratio we have obtained to date). X-ray crystallographic analysis reveals that 12 adopts a similar binding mode in both rat and human nNOS, in which the 2-aminopyridine and the fluorobenzene linker form crucial hydrogen bonds with glutamate and tyrosine residues, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。