Identification and Validation of Magnolol Biosynthesis Genes in Magnolia officinalis

厚朴中厚朴酚生物合成基因的鉴定与验证

阅读:6
作者:Yue Yang, Zihe Li, Hang Zong, Shimeng Liu, Qiuhui Du, Hao Wu, Zhenzhu Li, Xiao Wang, Lihui Huang, Changlong Lai, Meide Zhang, Wen Wang, Xianqing Chen

Abstract

Bacterial infections pose a significant risk to human health. Magnolol, derived from Magnolia officinalis, exhibits potent antibacterial properties. Synthetic biology offers a promising approach to manufacture such natural compounds. However, the plant-based biosynthesis of magnolol remains obscure, and the lack of identification of critical genes hampers its synthetic production. In this study, we have proposed a one-step conversion of magnolol from chavicol using laccase. After leveraging 20 transcriptomes from diverse parts of M. officinalis, transcripts were assembled, enriching genome annotation. Upon integrating this dataset with current genomic information, we could identify 30 laccase enzymes. From two potential gene clusters associated with magnolol production, highly expressed genes were subjected to functional analysis. In vitro experiments confirmed MoLAC14 as a pivotal enzyme in magnolol synthesis. Improvements in the thermal stability of MoLAC14 were achieved through selective mutations, where E345P, G377P, H347F, E346C, and E346F notably enhanced stability. By conducting alanine scanning, the essential residues in MoLAC14 were identified, and the L532A mutation further boosted magnolol production to an unprecedented level of 148.83 mg/L. Our findings not only elucidated the key enzymes for chavicol to magnolol conversion, but also laid the groundwork for synthetic biology-driven magnolol production, thereby providing valuable insights into M. officinalis biology and comparative plant science.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。