Effects of Lidocaine-Derived Organic Compounds on Eosinophil Activation and Survival

利多卡因衍生的有机化合物对嗜酸性粒细胞活化和存活的影响

阅读:7
作者:Seung-Heon Shin, Mi-Kyung Ye, Mi-Hyun Chae, Sang-Yen Geum, Ahmed S Aboraia, Abu-Baker M Abdel-Aal, Wesam S Qayed, Hend A A Abd El-Wahab, Ola F Abou-Ghadir, Tarek Aboul-Fadl

Abstract

Lidocaine, a local anesthetic, is known to possess anti-inflammatory properties. However, its clinical use is limited by inconveniences, such as its local synesthetic effects. This study evaluated lidocaine analogs designed and synthesized to overcome the disadvantages of lidocaine, having anti-inflammatory properties. Interleukin 5 (IL-5)-induced eosinophil activation and survival were evaluated using 36 lidocaine analogs with modified lidocaine structure on the aromatic or the acyl moiety or both. Eosinophil survival was evaluated using a CellTiter 96® aqueous cell proliferation assay kit. Superoxide production was determined using the superoxide dismutase-inhibitable reduction of cytochrome C method. Eosinophil cationic protein (ECP), IL-8, and transcription factor expression were determined using enzyme-linked immunosorbent assay. The platelet-activating factor (PAF)-induced migration assay was performed using a Transwell insert system. Compounds EI137 and EI341 inhibited IL-5-induced eosinophil survival and superoxide and ECP production in a concentration-dependent manner. These compounds also significantly reduced IL-8 production. Although compounds EI137 and EI341 significantly reduced phosphorylated ERK 1/2 expression, they did not influence other total and phosphorylated transcription factors. Moreover, 1000 µM of compound EI341 only inhibited PAF-induced migration of eosinophils. Lidocaine analogs EI137 and EI341 inhibited IL-5-mediated activation and survival of eosinophils. These compounds could be new therapeutic agents to treat eosinophilic inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。