P2X2 and P2Y1 immunofluorescence in rat neostriatal medium-spiny projection neurones and cholinergic interneurones is not linked to respective purinergic receptor function

大鼠新纹状体中棘投射神经元和胆碱能中间神经元中的 P2X2 和 P2Y1 免疫荧光与各自的嘌呤能受体功能无关

阅读:5
作者:Peter Scheibler, Mihail Pesic, Heike Franke, Robert Reinhardt, Kerstin Wirkner, Peter Illes, Wolfgang Nörenberg

Abstract

1. The presence of ionotropic P2X receptors, targets of ATP in fast synaptic transmission, as well as metabotropic P2Y receptors, known to activate K(+) currents in cultured neostriatal neurones, was investigated in medium-spiny neurones and cholinergic interneurones contained in neostriatal brain slices from 5-26-day-old rats. 2. In these cells, adenosine-5'-triphosphate (ATP) (100-1000 microm), 2-methylthioadenosine-5'-triphosphate (2MeSATP), alpha,beta-methyleneadenosine-5'-triphosphate (alpha,betameATP, 30-300 microm, each) and adenosine-5'-O-(3-thiotriphosphate (ATPgammaS) (100 microm) failed to evoke P2X receptor currents even when 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 0.1 microm), apyrase (10 U ml(-1)) or intracellular Cs(+) was used to prevent occluding effects of the ATP breakdown product adenosine, desensitisation of P2X receptors by endogenous ATP and an interference with the activation of K(+) channels, respectively. P2X receptor agonists were also ineffective in outside-out patches withdrawn from the brain slice tissue. Muscimol (10 microm) evoked GABA(A) receptor-mediated currents under all these conditions. 3. When used as a control, locus coeruleus neurones responded with P2X receptor-mediated currents to ATP (300 microm), 2MeSATP and alpha,betameATP (100 microm, each). 4. ATP and adenosine-5'-diphosphate (ADP) (100 microm, each) did not activate K(+) currents in the neostriatal neurones. 5. Despite the observed lack of function, P2X(2) and P2Y(1) immunofluorescence was found in roughly 50% of the medium-spiny neurones and cholinergic interneurones. 6. A role of ATP in synaptic transmission to striatal medium-spiny neurones and cholinergic interneurones appears unlikely, however, the otherwise silent P2X and P2Y receptors may gain functionality under certain yet unknown conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。