Abstract
1. The presence of ionotropic P2X receptors, targets of ATP in fast synaptic transmission, as well as metabotropic P2Y receptors, known to activate K(+) currents in cultured neostriatal neurones, was investigated in medium-spiny neurones and cholinergic interneurones contained in neostriatal brain slices from 5-26-day-old rats. 2. In these cells, adenosine-5'-triphosphate (ATP) (100-1000 microm), 2-methylthioadenosine-5'-triphosphate (2MeSATP), alpha,beta-methyleneadenosine-5'-triphosphate (alpha,betameATP, 30-300 microm, each) and adenosine-5'-O-(3-thiotriphosphate (ATPgammaS) (100 microm) failed to evoke P2X receptor currents even when 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 0.1 microm), apyrase (10 U ml(-1)) or intracellular Cs(+) was used to prevent occluding effects of the ATP breakdown product adenosine, desensitisation of P2X receptors by endogenous ATP and an interference with the activation of K(+) channels, respectively. P2X receptor agonists were also ineffective in outside-out patches withdrawn from the brain slice tissue. Muscimol (10 microm) evoked GABA(A) receptor-mediated currents under all these conditions. 3. When used as a control, locus coeruleus neurones responded with P2X receptor-mediated currents to ATP (300 microm), 2MeSATP and alpha,betameATP (100 microm, each). 4. ATP and adenosine-5'-diphosphate (ADP) (100 microm, each) did not activate K(+) currents in the neostriatal neurones. 5. Despite the observed lack of function, P2X(2) and P2Y(1) immunofluorescence was found in roughly 50% of the medium-spiny neurones and cholinergic interneurones. 6. A role of ATP in synaptic transmission to striatal medium-spiny neurones and cholinergic interneurones appears unlikely, however, the otherwise silent P2X and P2Y receptors may gain functionality under certain yet unknown conditions.
