Versatile potentiometric metabolite sensing without dioxygen interference

不受氧气干扰的多功能电位代谢物传感

阅读:9
作者:Nicole L Walker, Jeffrey E Dick

Abstract

The field of electrochemical biosensors has been dominated by amperometric and voltammetric sensors; however, these are limited greatly in their signal dependence on electrode size. Open circuit potentiometric sensors are emerging as an alternative due to their signal insensitivity to electrode size. Here, we present a second-generation biosensor that uses a modified chitosan hydrogel to entrap a dehydrogenase or other oxidoreductase enzyme of interest. The chitosan is modified with a desired electron mediator such that in the presence of the analyte, the enzyme will oxidize or reduce the mediator, thus altering the measured interfacial potential. Using the above design, we demonstrate a swift screening method for appropriate enzyme-mediator pairs based on open circuit potentiometry, as well as the efficacy of the biosensor design using two dehydrogenase enzymes (FADGDH and ADH) and peroxidase. Using 1,2-naphthoquinone as the mediator for FADGDH, dynamic ranges from 0.1 to 50 mM glucose are achieved. We additionally demonstrate the ease of fabrication and modification, a lifetime of ≥28 days, insensitivity to interferents, miniaturization to the microscale, and sensor efficacy in the presence of the enzyme's natural cofactor. These results forge a foundation for the generalized use of potentiometric biosensors for a wide variety of analytes within biologically-relevant systems where oxygen can be an interferent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。