Toosendanin inhibits adipogenesis by activating Wnt/β-catenin signaling

川楝素通过激活 Wnt/β-catenin 信号抑制脂肪生成

阅读:8
作者:Tian-Xing Chen, Xiao-Ying Cheng, Yun Wang, Wu Yin

Abstract

Toosendanin (TSN), a triterpenoid extracted from Melia toosendan, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities. However, its anti-adipogenic effect remains unknown. Here, we found that TSN dose-dependently attenuated lipid accumulation in preadipocytes 3T3-L1 as evidenced by Oil Red O staining. TSN also significantly downregulated mRNA and protein levels of adipocytokines (adiponectin and leptin), CCAAT/enhancer binding proteins α (C/EBP-α), peroxisome proliferator-activated receptor γ (PPAR-γ), fatty acid synthase, and acetyl-CoA carboxylase in adipocytes. To understand the mechanism, we observed that TSN effectively activated Wnt/β-catenin pathway, in which TSN increased low density lipoprotein receptor related protein 6, disheveled 2, β-catenin, and cyclin D1 expression levels, while it inactivated glycogen synthase kinase 3β by enhancing its phosphorylation. Moreover, TSN reduced weight of gonadal white fat and serum triacylglycerol (TAG) content in high-fat diet (HFD)-fed mice. Interestingly, the in vivo studies also demonstrated that TSN promoted the expression of β-catenin, but accordingly repressed C/EBP-α and PPAR-γ expression in HFD-induced mice. Overall, TSN is capable of inhibiting the lipogenesis of adipocytes by activating the Wnt/β-catenin pathway, suggesting potential application of TSN as a natural anti-obesity agent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。