Novel proline endopeptidase inhibitors do not modify Abeta40/42 formation and degradation by human cells expressing wild-type and swedish mutated beta-amyloid precursor protein

新型脯氨酸内肽酶抑制剂不会改变表达野生型和瑞典突变型 β-淀粉样蛋白前体的人类细胞的 Abeta40/42 形成和降解

阅读:5
作者:A Petit, H Barelli, P Morain, F Checler

Abstract

Previous studies have suggested that proline endopeptidase (PE) could participate to the catabolism of the beta-amyloid peptide (Abeta) or to the physiopathological maturation of the beta-amyloid protein precursor (betaAPP). We have examined the putative ability of human purified PE to catabolize Abeta40 and Abeta42 and the possible contribution of this enzyme to the generation of Abeta40 and Abeta42 in human HEK293 cells. We show first that purified human PE does not degrade synthetic Abeta40 and Abeta42, in vitro. We establish that HEK293 cell homogenates exhibit a Z-Gly-Pro-7AMC-cleaving enzyme, the activity of which is inhibited by Z-Pro-Prolinal and S17092 and S19825, two novel PE inhibitors, with affinities similar to those displayed on the purified human PE. These inhibitors also penetrate cells and achieve a full inhibition of endogenous proline endopeptidase in human cells. By means of selective antibodies directed towards the C-terminal of Abeta40 and Abeta42, we assessed the effect of PE inhibitors on the recovery of both Abeta species. This was examined in HEK293 cells stably overexpressing the wild-type and the familial Alzheimer's disease-related Swedish mutated beta-APP. We establish that none of these inhibitors affected Abeta40 or Abeta42 production in these transfected cells. Overall, our study indicates that human PE does not degrade Abeta40 and Abeta42. Furthermore, PE does not contribute to Abeta40 and Abeta42 formation in HEK293 cells. Therefore, PE does not appear to contribute to the Abeta-related aetiology of Alzheimer's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。