Hypoxia Reduces Mouse Urine Output via HIF1α-Mediated Upregulation of Renal AQP1

缺氧通过 HIF1α 介导的肾脏 AQP1 上调减少小鼠尿量

阅读:8
作者:Rongfang Qiao, Xiaohui Cui, Yitong Hu, Haoqing Wei, Hu Xu, Cong Zhang, Chunxiu Du, Jiazhen Chang, Yaqing Li, Wenhua Ming, Yinghui Qi, Youfei Guan, Xiaoyan Zhang

Conclusion

This study demonstrates that hypoxia can reduce the urine volume of mice via upregulating AQP1 expression by HIF1α in the proximal tubular epithelial cells. Our findings also suggest a potential mechanism involved in water metabolism disorders in patients with AMS and in patients with CKD receiving roxadustat treatment.

Methods

We first evaluated the effect of hypoxia (8% O2) on mouse urine output. We then performed in vitro experiments using hypoxia (1% O2) and roxadustat on mouse primary proximal tubular cells (mPTCs). The quantitative polymerase chain reaction, Western blot, and immunofluorescence were used to assess AQP1 mRNA and protein expression levels. Luciferase, Chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA) were used to investigate the transcriptional regulation of AQP1 by HIF1α.

Results

We found that mice exposed to hypoxia (8% O2) had significantly reduced urine volume compared to mice exposed to normoxia (21% O2). Hypoxia significantly elevated AQP1 expression at both mRNA and protein levels. In vitro experiments using mouse primary cultured proximal tubular cells (mPTCs) revealed that both hypoxia and roxadustat increased AQP1 expression. Mechanistically, overexpression of HIF1α, but not HIF2α, markedly increased AQP1 protein expression. Furthermore, the upregulation of AQP1 by hypoxia and roxadustat can be blocked by the HIF1α inhibitor PX-478 in mPTCs. Finally, we found that the AQP1 gene promoter contains a putative hypoxia response element and confirmed that AQP1 is a target gene of HIF1α using Luciferase reporter, ChIP, and EMSA assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。