Label-free enrichment of fate-biased human neural stem and progenitor cells

无标记富集命运偏向的人类神经干细胞和祖细胞

阅读:5
作者:Tayloria N G Adams, Alan Y L Jiang, Nicolo S Mendoza, Clarissa C Ro, Do-Hyun Lee, Abraham P Lee, Lisa A Flanagan

Abstract

Human neural stem and progenitor cells (hNSPCs) have therapeutic potential to treat neural diseases and injuries since they provide neuroprotection and differentiate into astrocytes, neurons, and oligodendrocytes. However, cultures of hNSPCs are heterogeneous, containing cells linked to distinct differentiated cell fates. HNSPCs that differentiate into astrocytes are of interest for specific neurological diseases, creating a need for approaches that can detect and isolate these cells. Astrocyte-biased hNSPCs differ from other cell types in electrophysiological properties, namely membrane capacitance, and we hypothesized that this could be used to enrich these cells using dielectrophoresis (DEP). We implemented a two-step DEP sorting scheme, consisting of analysis to define the optimal sorting frequency followed by separation of cells at that frequency, to test whether astrocyte-biased cells could be separated from the other cell types present in hNSPC cultures. We developed a novel device that increased sorting reproducibility and provided both enriched and depleted cell populations in a single sort. Astrocyte-biased cells were successfully enriched from hNSPC cultures by DEP sorting, making this the first study to use electrophysiological properties for label-free enrichment of human astrocyte-biased cells. Enriched astrocyte-biased human cells enable future experiments to determine the specific properties of these important cells and test their therapeutic efficacy in animal models of neurological diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。