Genetic Evidence of SpGH9A3 in Leaf Morphology Variation of Spathiphyllum 'Mojo'

SpGH9A3 在白掌‘Mojo’叶片形态变异中的遗传证据

阅读:6
作者:Songlin Yang, Minghua Hu, Runxin Wu, Zhiwen Hou, Huan Zhang, Wenying He, Lili Gao, Feixiong Liao

Abstract

Leaves play a crucial role as ornamental organs in Spathiphyllum, exhibiting distinct differences across various Spathiphyllum varieties. Leaf development is intricately linked to processes of cell proliferation and expansion, with cell morphology often regulated by plant cell walls, primarily composed of cellulose. Alterations in cellulose content can impact cell morphology, subsequently influencing the overall shape of plant organs. Although cellulases have been shown to affect cellulose levels in plant cells, genetic evidence linking them to the regulation of leaf shape remains limited. This study took the leaves of Spathiphyllum 'Mojo' and its somatic variants as the research objects. We screened four cellulase gene family members from the transcriptome and then measured the leaf cellulose content, cellulase activity, and expression levels of cellulase-related genes. Correlation analysis pinpointed the gene SpGH9A3 as closely associated with leaf shape variations in the mutant. Green fluorescent fusion protein assays revealed that the SpGH9A3 protein was localized to the cell membrane. Notably, the expression of the SpGH9A3 gene in mutant leaves peaked during the early spread stage, resulting in smaller overall leaf size and reduced cellulose content upon overexpression in Arabidopsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。