HPV-driven heterogeneity in cervical cancer: study on the role of epithelial cells and myofibroblasts in the tumor progression based on single-cell RNA sequencing analysis

HPV驱动的宫颈癌异质性:基于单细胞RNA测序分析研究上皮细胞和肌成纤维细胞在肿瘤进展中的作用

阅读:5
作者:Yunyun Zhang, Yu Zhang, Chenke Pan, Wenqian Wang, Yao Yu

Background

Cervical cancer (CC) is a neoplasia with a high heterogeneity. We aimed to explore the characteristics of tumor microenvironment (TME) for CC treatment.

Conclusion

This study highlighted the critical role of HPV infection in CC progression, providing a novel molecular basis for optimizing the current preventive screening and personalized treatment for the cancer.

Methods

HPV positive (+) and negative (-) samples from cervical cancer (CC) patients were sourced from the Gene Expression Omnibus (GEO) database. The single-cell RNA sequencing (scRNA-seq) data were processed and annotated for cell types utilizing the Seurat package. Following this, the expression levels and biological roles of the marker genes were analyzed applying real-time PCR (RT-PCR) and transwell assays. Furthermore, the enrichment of genes with significantly differential expressions and copy number variations was assessed by the ClusterProlifer and inferCNV software packages.

Results

Seven main cell clusters were classified based on a total of 12,431 cells. The HPV- CC samples exhibited a higher immune cell infiltration level, while epithelial cells and myofibroblasts had higher proportion in the HPV+ CC samples with extensive heterogeneity. Immune pathways including antigen treatment and presentation, immunoglobulin production and T cell mediated immunity were significantly activated in the HPV- CC group with lower cell cycle and proliferation activity. However, the anti-tumor immunity of these cells was inhibited in HPV+ CC group with higher cell proliferation activity. Moreover, the amplification and loss of CNVs also supported that these cells in HPV- CC samples were prone to anti-tumor activation. Further cell validation results showed that except GZMA, the levels of APOC1, CEACAM6, FOXP3, SFRP4 and TFF3 were all higher in CC cells Hela, and that silencing TFF3 could inhibit the migration and invasion of CC cells in-vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。