Electrothermally Self-Healing Delamination Cracks in Carbon/Epoxy Composites Using Sandwich and Tough Carbon Nanotube/Copolymer Interleaves

使用夹层和坚韧的碳纳米管/共聚物夹层实现碳/环氧复合材料中电热自修复分层裂纹

阅读:5
作者:Qin Ouyang, Ling Liu, Zhanjun Wu

Abstract

Herein, two sandwich and porous interleaves composed of carbon nanotube (CNT) and poly(ethylene-co-methacrylic acid) (EMAA) are proposed, which can simultaneously toughen and self-heal the interlaminar interface of a carbon fiber-reinforced plastic (CFRP) by in situ electrical heating of the CNTs. The critical strain energy release rate modes I (GIC) and II (GIIC) are measured to evaluate the toughening and self-healing efficiencies of the interleaves. The results show that compared to the baseline CFRP, the CNT-EMAA-CNT interleaf could increase the GIC by 24.0% and the GIIC by 15.2%, respectively, and their respective self-healing efficiencies could reach 109.7-123.5% and 90.6-91.2%; meanwhile, the EMAA-CNT-EMAA interleaf can improve the GIC and GIIC by 66.9% and 16.7%, respectively, and the corresponding self-healing efficiencies of the GIC and GIIC are 122.7-125.9% and 93.1-94.7%. Thus, both the interleaves show good toughening and self-healing efficiencies on the interlaminar fracture toughness. Specifically, the EMAA-CNT-EMAA interleaf possesses better multi-functionality, i.e., moderate toughening ability but notable self-healing efficiency via electrical heating, which is better than the traditional neat EMAA interleaf and oven-based heating healing method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。