In Vitro Investigation of 3D Printed Hydrogel Scaffolds with Electrospun Tidemark Component for Modeling Osteochondral Interface

带有电纺潮汐标记组件的 3D 打印水凝胶支架用于骨软骨界面建模的体外研究

阅读:9
作者:Victoria Effiong Effanga, Dana Akilbekova, Fariza Mukasheva, Xiao Zhao, Dilhan M Kalyon, Cevat Erisken

Abstract

Osteochondral (OC) tissue plays a crucial role due to its ability to connect bone and cartilage tissues. To address the complexity of structure and functionality at the bone-cartilage interface, relevant to the presence of the tidemark as a critical element at the bone-cartilage boundary, we fabricated graded scaffolds through sequential 3D printing. The scaffold's bottom layer was based on a gelatin/oxidized alginate mixture enriched with hydroxyapatite (HAp) to create a rougher surface and larger pores to promote osteogenesis. In contrast, the upper layer was engineered to have smaller pores and aimed to promote cartilage tissue formation and mimic the physical properties of the cartilage. An electrospun ε-polycaprolactone (PCL) membrane with micrometer-range pores was incorporated between the layers to replicate the function of tidemark-a barrier to prevent vascularization of cartilage from subchondral bone tissue. In vitro cell studies confirmed the viability of the cells on the layers of the scaffolds and the ability of PCL mesh to prevent cellular migration. The fabricated scaffolds were thoroughly characterized, and their mechanical properties were compared to native OC tissue, demonstrating suitability for OC tissue engineering and graft modeling. The distance of gradient of mineral concentration was found to be 151 µm for grafts and the native OC interface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。