Divalent cation-induced conformational changes of influenza virus hemagglutinin

二价阳离子诱导的流感病毒血凝素构象变化

阅读:5
作者:Jong Hyeon Seok, Hyojin Kim, Dan Bi Lee, Jeong Suk An, Eun Jeong Kim, Ji-Hye Lee, Mi Sook Chung, Kyung Hyun Kim

Abstract

Divalent cations Cu2+ and Zn2+ can prevent the viral growth in mammalian cells during influenza infection, and viral titers decrease significantly on a copper surface. The underlying mechanisms include DNA damage by radicals, modulation of viral protease, M1 or neuraminidase, and morphological changes in viral particles. However, the molecular mechanisms underlying divalent cation-mediated antiviral activities are unclear. An unexpected observation of this study was that a Zn2+ ion is bound by Glu68 and His137 residues at the head regions of two neighboring trimers in the crystal structure of hemagglutinin (HA) derived from A/Thailand/CU44/2006. The binding of Zn2+ at high concentrations induced multimerization of HA and decreased its acid stability. The acid-induced conformational change of HA occurred even at neutral pH in the presence of Zn2+. The fusion of viral and host endosomal membranes requires substantial conformational changes in HA upon exposure to acidic pH. Therefore, our results suggest that binding of Zn2+ may facilitate the conformational changes of HA, analogous to that induced by acidic pH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。