Impaired SERCA2a phosphorylation causes diabetic cardiomyopathy through impinging on cardiac contractility and precursor protein processing

SERCA2a 磷酸化受损通过影响心脏收缩力和前体蛋白加工导致糖尿病性心肌病

阅读:5
作者:Chao Quan, Sangsang Zhu, Ruizhen Wang, Jiamou Chen, Qiaoli Chen, Min Li, Shu Su, Qian Du, Minjun Liu, Hong-Yu Wang, Shuai Chen

Abstract

Diabetic cardiomyopathy (DCM) is currently a progressive and nonstoppable complication in type 2 diabetic patients. Metabolic insults and insulin resistance are involved in its pathogenesis; however, the underlying mechanisms are still not clearly understood. Here we show that calcium dysregulation can be both a cause and a consequence of cardiac insulin resistance that leads to DCM. A western diet induces the development of DCM through at least three phases in mice, among which an early phase depends on impaired Thr484-phosphorylation of sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a) elicited by insulin resistance. Mutation of SERCA2a-Thr484 to a nonphosphorylatable alanine delays calcium re-uptake into the sarcoplasmic reticulum in the cardiomyocytes and decreases cardiac function at the baseline. Importantly, this mutation blunts the early phase of DCM, but has no effect on disease progression in the following phases. Interestingly, impairment of sarcoplasmic reticulum calcium re-uptake caused by the SERCA2a-Thr484 mutation inhibited processing of insulin receptor precursor through FURIN convertase, resulting in cardiac insulin resistance. Collectively, these data reveal a bidirectional relationship between insulin resistance and impairment of calcium homeostasis, which may underlie the early pathogenesis of DCM. Our findings have therapeutic implications for early intervention of DCM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。